

The acid-base system of the Baltic Sea

Karol Kuliński

Marcin Stokowski, Beata Szymczycha, Karoline Hammer, Katarzyna Koziorowska, Aleksandra Winogradow, Monika Lengier, Żaneta Kłostowska, Bernd Schneider

2nd Baltic Earth Conference The Baltic Sea Region in Transition Helsingor, Denmark, 11-15 June 2018

Seawater acid-base system

Measurable parameters:

- $C_{T} \text{total CO}_{2} \text{ concentration (DIC)}$ $C_{T} = [CO_{2}]^{*} + [HCO_{3}^{-}] + [CO_{3}^{2-}]$
- $A_T \text{total alkalinity}$ $A_T = [HCO_3^-] + 2[CO_3^2] + [B(OH)_4^-] + [OH^-] + \dots - [H^+] - \dots$
- \circ pCO₂ CO₂ partial pressure
- pH –spectrophotometric measurement with m-cresol purple, total scale $pH_T = -\log ([H^+]_F + [HSO_4^-]) = -\log [H^+]_T$

It is possible to calculate 2 parameters when the following is known:

- o other 2 parameters
- o temperature & salinity
- o equilibrium constants for each of the acid dissociation reactions
- o total concentrations for each non-CO₂ substances

The pair used in the calculations:

 $\circ \underline{C_T \& A_T - recommended}$, used in biogeochemical modelling

The Baltic Sea

Source: balticseaweed.com

Source: SMHI

\mathbf{A}_{T} variability in the Baltic Sea

Kuliński et al., 2017, Earth Syst. Dynam. modified after Omstedt et al., 2010

Total alkalinity

The total alkalinity of seawater is defined as the excess of proton acceptors (bases formed from weak acids with a dissociation constant K \leq 10^{-4.5} at 25°C) over proton donors (acids with K>10^{-4.5}) and expressed as a hydrogen ion equivalent in one kilogram of sample (Dickson, 1981):

Organic alkalinity

Kuliński et al., 2014, J. Mar. Syst.

Organic acids

Ulfsbo et al., 2015, Mar. Chem.

Boron anomaly

Kuliński et al., in print, Mar. Chem.

Boron anomaly

Kuliński et al., Mar. Chem. in print

The oceanic CO₂ system

- Bermuda Atlantic Time-series Study BATS

Bates et al, 2012

Long-term A_T changes in the Baltic Sea

Müller et al., 2016, L&O

Sediments – source of alkalinity

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 138O_2 \rightarrow 106CO_2 + 16H^+ + 16NO_3^- + 122H_2O + H_3PO_4$ $\Delta A_T = -16$

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 236MnO_2 + 472H^+ \rightarrow 236Mn^{2+} + 106CO_2 + 8N_2 + 366H_2O + H_3PO_4$ $\Delta A_T = +472$

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 84.8H^+ + 84.8NO_3^- \rightarrow 106CO_2 + 42.4N_2 + 16NH_3 + 148.4H_2O + H_3PO_4$ $\Delta \mathbf{A_T} = +100.8$

$$\begin{array}{c} (CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 212Fe_2O_3 + 848H^+ \rightarrow \\ 424Fe^{2+} + 106CO_2 + 16NH_3 + 530H_2O + H_3PO_4 \\ \Delta \mathbf{A_T} = +\mathbf{864} \\ \\ (CH_2O)_{106}(NH_3)_{16}(H_3PO_4) + 53SO_4^{2-} \rightarrow \\ 106CO_2 + 16NH_3 + 53S^{2-} + 106H_2O + H_3PO_4 \\ \Delta \mathbf{A_T} = +\mathbf{122} \end{array}$$

 $(CH_2O)_{106}(NH_3)_{16}(H_3PO_4) \rightarrow 53CO_2 + 53CH_4 + 16NH_3 + H_3PO_4$ $\Delta A_T = +16$ Kuliński et al., 2017, Earth Syst. Dynam.

A_T variability in the Baltic Sea

Poster B4

Hammer et al., in prep.

Poster B11 CaCO₃ precipitation in the Odra mouth

C_T [µmol/kg]

Stokowski et al., in prep.

CO₂ system studies in the Gulf of Gdansk

Conclusions

- The Baltic Sea acid-base system characterizes with high spatial and temporal variability
- A common thermodynamic model of the A_T does not work for the Baltic Sea (organic alkalinity, borate alkalinity....)
- There is a clear positive long-term A_T trend in the Baltic, higher in the north and lower in the south. What is the source of that increase?
- Role of sediments in A_T release?
- Transformations of the CO_2 (and acid-base) system in the mixing zone in estuaries can have significant impact on the A_T loads to the Baltic Sea.

Thank you

The Baltic Sea

Kuliński & Pempkowiak, 2011, Biogeosciences

Source: HELCOM

Kuliński et al., 2011, Cont. Shelf Res.

A_T and **C_T** seasonality in the Vistula River

Kuliński et al., in prep.

Functional groups in DOM

hypothetical structure of humic-like substances

CaCO₃ precipitation in the Odra mouth

Long-term A_T changes in the Baltic Sea

Müller et al., 2016, L&O